Modelling of High-Frequency Roughness Scattering from Various Rough Surfaces through the Small Slope Approximation of First Order
نویسندگان
چکیده
The first-order small slope approximation is applied to model the scattering strength from a rough surface in underwater acoustics to account for seafloor for high frequencies from 10 kHz to hundreds of kilohertz. Emphasis is placed on simulating the response from two-dimensional anisotropic rough surfaces. Several rough surfaces are described based on structure functions such as the particular sandy ripples shape. The scattering strength is predicted by the small slope approximation and is first compared to a well known bistatic method, interpolating the Kirchhoff approximation and the small perturbations model, assuming that the rough interface is isotropic. Results obtained from the two different models are similar and show a higher level in the specular direction than in the other directions. For an isotropic surface, changing the propagation plane gives similar results. Then, SSA, which lets us adapt the structure function of the roughness straight away, is tested trough several anisotropic surfaces. In a longitudinal direction of ripples, the scattering strength is mostly in the specular direction, whereas in the transversal direction of ripples, the scattering strength prediction shows high values for different angular directions. Thus the scattering strength is spread in a very different way strictly related to the particular features of the ripples. Combine our results, indicates the importance of taking into account the anisotropy of a surface in a scattering prediction process, taking into account the positions of the emitter and of the receiver which are naturally significant when predicting scattering strength.
منابع مشابه
Sea Surfaces Scattering by Multi-Order Small-Slope Approximation: a Monte-Carlo and Analytical Comparison
L-band electromagnetic scattering from two-dimensional random rough sea surfaces are calculated by first- and second-order Small-Slope Approximation (SSA1, 2) methods. Both analytical and numerical computations are utilized to calculate incoherent normalized radar cross-section (NRCS) in mono- and bi-static cases. For evaluating inverse Fourier transform, inverse fast Fourier transform (IFFT) i...
متن کاملAn investigation of the small slope approximation for scattering from rough surfaces. Part II. Numerical studies
The small slope approximation !SSA" of Voronovich #Sov. Phys. JETP 62, 65–70 !1985"$ is a promising method for modeling wave scattering from rough surfaces. The SSA T-matrix series, which can be interpreted as an expansion in a generalized surface slope, satisfies the appropriate reciprocity condition at each order and reduces to the standard perturbation series for small surface roughness. Whe...
متن کاملAn experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces
We present an experimental study of the angular distribution of light scattered from several rough metallic surfaces, which cover a range of roughness conditions. The substrate materials are steel or glass; roughened by bead-blasting, grinding, or etching; and aluminum-coated. The measured surface-roughness statistics are filtered by using a composite roughness model. The raw mechanical roughne...
متن کاملHigh Frequency Roughness Scattering from Various Rough Surfaces: Theory and Laboratory Experiments
The scattering strength of isotropic and anisotropic rough surfaces was experimentally and theoretically investigated for high frequencies about 500 kHz. Emphasis was placed on studying the response from three two-dimensional rough surfaces which roughness was either isotropic (characterized by a Gaussian distribution) or anisotropic (characterized by a modified-sine surface). Theoretical predi...
متن کاملA Comparison of Scattering Model Results for Two-Dimensional Randomly Rough Surfaces
Bistatic radar cross sections are calculated using two modern scattering models: the small slope approximation (both firstand second-order) and the phase perturbation technique. The problem is limited to scalar-wave scattering from two-dimensional, randomly rough Diricblet surfaces with a Gaussian roughness spectrum. Numerical results for the cross sections are compared to those found using the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013